

Making Astrometric Solver Tractable through In-Situ Visual Analytics

This work is financially supported by the German Aerospace Agency (Deutsches Zentrum für Luft- und Raumfahrt e.V., DLR) through grant 500D2201

Konstantin Ryabinin,

konstantin.riabinin@uni-heidelberg.de

Wolfgang Löffler,

loeffler@ari.uni-heidelberg.de,

Olga Erokhina,

olga.erokhina@uni-heidelberg.de

Gerasimos Sarras,

gerasimos.sarras@uni-heidelberg.de

Michael Biermann,

biermann@ari.uni-heidelberg.de

2/14

SciVi =
$$\sum$$
 Control Modules + \sum Operators

SciVi =
$$\sum$$
 Control Modules + \sum Operators

Operator = Implementation + Ontology

Own Third-Party Lightweight:
$$O = \{R, T\}$$

In-Situ Visual Analytics with the SciVi Platform

SciVi = \sum Control Modules + \sum Operators

Operator = Implementation + Ontology

Own Third-Party Lightweight: $O = \{R, T\}$

SciVi allows building pipelines of operators

Corresponding GUI is generated automatically

AJAS + SciVi = *

AJAS + SciVi = *

AJAS + SciVi = V

RACCOONS: Rapid ACCess Operations On Numerical Solutions

RACCOONS Data Access Library

RACCOONS: Rapid ACCess Operations On Numerical Solutions


```
import raccoons

def get_obs(path: str) -> list:
    engine = raccoons.Engine(path)
    query = raccoons.MapReduceQuery(
        num_groups = engine.mission.number_of_stars,
        condition = "{ return observation.starID; }",
        selector = "{ return 1; }",
        reduction = "{ slot += value; }")
    engine.forEachObservation([ query ])
    return query.histogram(num_bins = 50)
```


10/14

RACCOONS and SciVi Interoperability

Python code:

```
import raccoons

def get_obs(path: str) -> list:
    engine = raccoons.Engine(path)
    query = raccoons.MapReduceQuery(
        num_groups = engine.mission.number_of_stars,
        condition = "{ return observation.starID; }",
        selector = "{ return 1; }",
        reduction = "{ slot += value; }")
    engine.forEachObservation([ query ])
    return query.histogram(num_bins = 50)
```

JavaScript code:

```
obs.js
     async function plot0bs(path) {
         const obs = await get_obs(path);
         NChart3DLib().then(mdl => {
             const chartConfig = {
                  cartesianSystem:
                      xAxis:
                          caption: { text: "Observations / Source" },
                         valueMask: "%.0f"
                      },
12
                      yAxis:
13
                          caption: { text: "Log(Amount)" },
14
                          isLogarithmic: true,
                         valueMask: "%.1e"
17
18
                  },
19
                 series:
20
21
22
                          type: "column",
                         brush: "#60cce8",
23
                          borderBrush: "#000000",
24
                         borderThickness: 1,
25
                         points:
27
28
                              type: "xy",
                              data: obs
29
30
31
32
33
              const chart = new mdl.NChart("obsPlotCanvas");
             chart.loadJSON(JSON.stringify(chartConfig));
         });
37
```

Python code:

Looks like a function call...

```
obs.js
     async function places (pain) {
                        vait get_obs(path);
         const obs
         NChart3DLib
              const chartConfig = {
                    rtesianSystem:
                      xAxis:
                          caption: { text: "Observations / Source" },
                         valueMask: "%.0f"
                      },
12
                      yAxis:
13
                          caption: { text: "Log(Amount)" },
14
                          isLogarithmic: true,
                         valueMask: "%.1e"
17
18
                  },
19
                 series:
20
22
                          type: "column",
                         brush: "#60cce8",
23
                          borderBrush: "#000000",
24
                         borderThickness: 1,
25
                         points:
27
                              type: "xy",
28
                              data: obs
29
30
31
32
33
              const chart = new mdl.NChart("obsPlotCanvas");
             chart.loadJSON(JSON.stringify(chartConfig));
         });
37
```

Python code:

```
import raccoons

de get_obs(path: str) > list:
    ipe = raccooper prize(path)
    query = raccooper prize(path)
    reduction = "{ return observation.starID; }",
    selector = "{ return 1; }",
    reduction = "{ slot += value; }")
    engine.forEachObservation([ query ])
    return query.histogram(num_bins = 50)
```

Looks like a function call...

It is function call!

```
obs.js
     async function places(pain) (
                       vait get_obs(path);
         const obs
         NChart3DLib
             const chartConfig = -
                    rtesianSystem:
                      xAxis:
                         caption: { text: "Observations / Source" },
                         valueMask: "%.0f"
12
                      yAxis:
13
                         caption: { text: "Log(Amount)" },
14
                         isLogarithmic: true,
15
                         valueMask: "%.1e"
17
18
                 },
19
                 series:
20
22
                         type: "column",
                         brush: "#60cce8",
23
                         borderBrush: "#000000",
24
                         borderThickness: 1,
25
                         points:
27
                             type: "xy",
28
                             data: obs
29
30
31
32
33
             const chart = new mdl.NChart("obsPlotCanvas");
             chart.loadJSON(JSON.stringify(chartConfig));
         });
37
```

Python code:

```
import raccoons

def get_obs(path: str) -> list:
    engine = raccoons.Engine(path)
    query = raccoons.MapReduceQuery(
        num_groups = engine.mission.number_of_stars,
        condition = "{ return observation.starID; }",
        selector = "{ return 1; }",
        reduction = "{ slot += value; }")
    engine.forEachObservation([ query ])
    return query.histogram(num_bins = 50)
```

```
obs.js
     async function plot0bs(path) {
         const obs = await get_obs(path);
         NChart3DLib().then(mdl => {
             const chartConfig = {
                  cartesianSystem:
                      xAxis:
                          caption: { text: "Observations / Source" },
                         valueMask: "%.0f"
                      },
12
                      yAxis:
13
                          caption: { text: "Log(Amount)" },
14
                          isLogarithmic: true,
                         valueMask: "%.1e"
17
18
                  },
19
                 series:
20
21
22
                          type: "column",
                         brush: "#60cce8",
23
                          borderBrush: "#000000",
24
                         borderThickness: 1,
25
                         points:
27
28
                              type: "xy",
                              data: obs
29
30
31
32
33
              const chart = new mdl.NChart("obsPlotCanvas");
             chart.loadJSON(JSON.stringify(chartConfig));
         });
37
```

Python code:


```
obs.js
     async function plot0bs(path) {
         const obs = await get_obs(path);
         NChart3DLib().then(mdl => {
             const chartConfig = {
                  cartesianSystem:
                      xAxis:
                          caption: { text: "Observations / Source" },
                         valueMask: "%.0f"
                      },
12
                      yAxis:
13
                          caption: { text: "Log(Amount)" },
                          isLogarithmic: true,
                         valueMask: "%.1e"
17
18
                  },
19
                 series:
20
22
                          type: "column",
                         brush: "#60cce8",
23
                          borderBrush: "#000000",
24
                         borderThickness: 1,
25
                          points:
27
28
                              type: "xy",
                              data: obs
29
30
31
32
33
              const chart = new mdl.NChart("obsPlotCanvas");
             chart.loadJSON(JSON.stringify(chartConfig));
         });
37
```

Python code:


```
obs.js
     async function plot0bs(path) {
         const obs = await get_obs(path);
         NChart3DLib().then(mdl => {
              const chartConfig = {
                  cartesianSystem:
                      xAxis:
                          caption: { text: "Observations / Source" },
                         valueMask: "%.0f"
12
                      yAxis:
                          caption: { text: "Log(Amount)" },
                          isLogarithmic: true,
                         valueMask: "%.1e"
17
18
                  },
19
                 series:
20
22
                          type: "column",
                         brush: "#60cce8",
23
                          borderBrush: "#000000",
24
                         borderThickness: 1,
25
                          points:
27
28
                              type: "xy",
                              data: obs
29
30
31
32
33
              const chart = new mdl.NChart("obsPlotCanvas");
             chart.loadJSON(JSON.stringify(chartConfig));
         });
37
```

Python code:


```
obs.js
     async function plot0bs(path) {
         const obs = await get_obs(path);
         NChart3DLib().then(mdl => {
              const chartConfig = {
                  cartesianSystem:
                      xAxis:
                          caption: { text: "Observations / Source" },
                          valueMask: "%.0f"
12
                      yAxis:
                          caption: { text: "Log(Amount)" },
                          isLogarithmic: true,
                          valueMask: "%.1e"
                  },
19
                  series:
20
22
                          type: "column",
                          brush: "#60cce8",
23
                          borderBrush: "#000000",
24
                          borderThickness: 1,
25
                          points:
27
28
                              type: "xy",
                              data: obs
29
30
32
33
              const chart = new mdl.NChart("obsPlotCanvas");
              chart.loadJSON(JSON.stringify(chartConfig));
         });
37
```



```
async function plot0bs(path) {
                 wait get_obs(path);
    NChart3DLib().then(mdl => {
        const chartConfig = {
            cartesianSystem:
                    caption: { text: "Observations / Source" },
                    valueMask: "%.0f"
                    caption: { text: "Log(Amount)" },
                    isLogarithmic: true,
                    valueMask: "%.1e"
                    type: "column",
                    brush: "#60cce8",
                    borderBrush: "#000000",
                    borderThickness: 1,
                    points:
                        type: "xy",
                        data: obs
        const chart = new mdl.NChart("obsPlotCanvas");
        chart.loadJSON(JSON.stringify(chartConfig));
```

Python code: JavaScript code: obs.py typerst receases

```
import raccoons
                                                     Ontology-Driven FFI
   def get_obs(path: str) -> list:)
                                                                                     Automatic Marshaling
      engine = raccoons.Engine(path)
      query = raccoons.MapReduceQuery(
         num_groups = engine.mission.number_of_stars,
         condition = "{ return observation.starID; }",
         selector = "{ return 1; }",
         reduction = "{ slot += value; }")
      engine.forEachObservation([ query ])
      return query.histogram(num_bins = 50)
                        Worker
                  ServerSideWorker
                        obs.py
                                          Python
                       get_obs
                                            API
                                                                Autogenerated
                 path
                                                 Output
                                 result
Input
       String
                                           List
                         Type
```

```
asynction plot0bs(path)
         const obs  await get obs(path);
                 to().then(mdl => {
             const chartConfig = {
                 cartesianSystem:
                     xAxis:
                         caption: { text: "Observations / Source" },
                         valueMask: "%.0f"
                     yAxis:
                         caption: { text: "Log(Amount)" },
                         isLogarithmic: true,
                         valueMask: "%.1e"
17
18
                 },
19
                 series:
20
21
22
                         type: "column",
                         brush: "#60cce8",
23
                         borderBrush: "#000000",
24
                         borderThickness: 1,
25
                         points:
27
28
                            data: obs
29
30
32
33
             const chart = new mdl.NChart("obsPlotCanvas");
             chart.loadJSON(JSON.stringify(chartConfig));
         });
37
```

Python code: JavaScript code: obs.py import raccoons Ontology-Driven FFI

```
Ontology-Driven FFI
   def get_obs(path: str) -> list:
                                                                                     Automatic Marshaling
      engine = raccoons.Engine(path)
      query = raccoons.MapReduceQuery(
         num_groups = engine.mission.number_of_stars,
         condition = "{ return observation.starID; }",
         selector = "{ return 1; }",
         reduction = "{ slot += value; }")
      engine.forEachObservation([ query ])
      return query.histogram(num_bins = 50)
                        Worker
                  ServerSideWorker
                        obs.py
                                          Python
                                           API
                       get_obs
                                                               Autogenerated
                 path
                                                 Output
                                 result
Input
```

```
asynction plot0bs(path)
         const obs  await get_obs(path);
                 to().then(mdl => {
             const chartConfig = {
                 cartesianSystem:
                     xAxis:
                         caption: { text: "Observations / Source" },
                        valueMask: "%.0f"
                     yAxis:
                         caption: { text: "Log(Amount)" },
                         isLogarithmic: true,
                        valueMask: "%.1e"
17
18
                 },
19
                 series:
20
21
22
                         type: "column",
                         brush: "#60cce8",
23
                         borderBrush: "#000000",
24
                         borderThickness: 1,
25
                         po nts:
27
28
                           data: obs
29
30
32
33
            const chart new mdl.NChart("obsPlotCanvas");
              Chall (JSON.stringify(chartConfig));
         });
37
```

String

Type

List

Python code: JavaScript code: obs.js obs.py asynction plot0bs(path) import raccoons **Ontology-Driven FFI** await get_obs(path); def get_obs(path: str) -> list: <u>--</u>rb().then(*mdl* => { **Automatic Marshaling** const chartConfig = { engine = raccoons.Engine(path) query = raccoons.MapReduceQuery(cartesianSystem: num_groups = engine.mission.number_of_stars, condition = "{ return observation.starID; }", xAxis: selector = "{ return 1; }", reduction = "{ slot += value; }") caption: { text: "Observations / Source" }, engine.forEachObservation([query]) valueMask: "%.0f" return query.histogram(num_bins = 50) yAxis: caption: { text: "Log(Amount)" }, Worker isLogarithmic: true, valueMask: "%.1e" 18 }, ServerSideWorker 19 series: 20 22 type: "column", obs.py **Python** brush: "#60cce8", 23 borderBrush: "#000000", 24 borderThickness: 1, 25 po nts: **API** get_obs 27 28 data: obs 29 Autogenerated path Output result Input const chart new mdl.NChart("obsPlotCanvas"); chall toadJSON(JSON.stringify(chartConfig)); **String** }); List Type https://nchart3d.com/

Python code: obs.py import raccoons **Ontology-Driven FFI Automatic Marshaling** engine = raccoons.Engine(path) query = raccoons.MapReduceQuery(num_groups = engine.mission.number_of_stars, condition = "{ return observation.starID; }", selector = "{ return 1; }", reduction = "{ slot += value; }") engine.forEachObservation([query]) return query.histogram(num_bins = 50) Worker Written in C++ ServerSideWorker Compiled with Emscripten for Web Uses GPU for rendering obs.py **Python** Can handle 1M+ data points and remains interactive **API** get_obs Autogenerated path Output result **String** List Type https://nchart3d.com/

```
plot0bs(path)
                      await get_obs(path);)
                  <u>-</u>rb().then(mdl => {
             const chartConfig = {
                 cartesianSystem:
                      xAxis:
                         caption: { text: "Observations / Source" },
                         valueMask: "%.0f"
                      yAxis:
                         caption: { text: "Log(Amount)" },
                         isLogarithmic: true,
                         valueMask: "%.1e"
18
                 },
19
                 series:
20
21
22
                         type: "column",
                         brush: "#60cce8",
23
                         borderBrush: "#000000",
24
                         borderThickness: 1,
25
                          po nts:
27
28
                            data: obs
29
             const chart new mdl.NChart("obsPlotCanvas");
              Chartenauson(JSON.stringify(chartConfig));
         });
```

Dataflow editor generated by SciVi

Dataflow editor generated by SciVi

Interactive visualization in SciVi

Mission Overview

1.	Number of sources	11271
2.	Number of Gaia priors	5684
3.	Number of exposures	25200
4.	Number of detectors	4
5.	Number of astrometric parameters	2
6.	Number of calibration orders	6
7.	Number of units of each order	[25200,25200,1,1,1,1]
7. 8.	Number of units of each order Number of 2D-observations	[25200,25200,1,1,1,1] 14132556
-		
8.	Number of 2D-observations	14132556
8. 9.	Number of 2D-observations Number of unknowns in the system	14132556 627486

AJAS Statistics

1.	AJAS Git hash	7418a21f672dc6234a26e6a7a372d2bedcf6755b
2.	Process grid	2 × 2
3.	Number of building threads per process	1
4.	Number of summation threads per process	1
5.	Matrix building time	00:00:57.661
6.	Eigenproblem solving time	00:07:15.376
7.	Eigenvalues filtering time	0.00:00:00
8.	Pseudoinverse matrix calculation time	00:01:04.866
9.	Backsubstitution and resudiuals calculation time	00:00:00.513
10.	Total solving time	00:09:18.416

ARI/ZAH

Dataflow editor generated by SciVi

Interactive visualization in SciVi

Interactive visualization in SciVi

Dataflow editor generated by SciVi

Interactive visualization in SciVi

Conclusions and Future Work

Achieved:

- 1. Astrometry bridged with the In-Situ Visual Analytics
- 2. For AJAS:
 - a. Tractability loop organised using SciVi
 - b. High-performance data access library (RACCOONS) developed
- 3. For SciVi: ontology-driven API proposed and developed

Future Work:

- 1. Develop more operators for solution analysis in SciVi
- 2. Further optimise data access routines in RACCOONS

Thank you for attention!

This work is financially supported by the German Aerospace Agency (Deutsches Zentrum für Luft- und Raumfahrt e.V., DLR) through grant 500D2201

Konstantin Ryabinin,

konstantin.riabinin@uni-heidelberg.de

Wolfgang Löffler,

loeffler@ari.uni-heidelberg.de,

Olga Erokhina,

olga.erokhina@uni-heidelberg.de

Gerasimos Sarras,

gerasimos.sarras@uni-heidelberg.de

Michael Biermann,

biermann@ari.uni-heidelberg.de