





# Semantic Hashing to Remedy Uncertainties in Ontology-Driven Edge Computing

This study is supported by the research grant No. ID92566385 from Saint Petersburg University, "Text processing in L1 and L2: Experimental study with eye-tracking, visual analytics and virtual reality technologies"

Konstantin Ryabinin 1,2,3, kostya.ryabinin@gmail.com
Svetlana Chuprina 2, chuprinas@inbox.ru













(Ryabinin, 2020)





(Ryabinin, 2020)

Ontology

of Operators

**Platform** 



(Ryabinin, 2020)













## **Compatibility Uncertainty**



# **Compatibility Uncertainty**



# **Compatibility Uncertainty**







# How to Remedy Compatibility Uncertainty?



**Compatibility Check?** 

**Naïve Solution: Ontology Version Numbering** 

Each change, however irrelevant, will lead to firmware update





**Compatibility Check?** 

Naïve Solution: **Ontology Version Numbering** 

Each change, however irrelevant, will lead to firmware update



## How to Remedy Compatibility Uncertainty?



**Compatibility Check?** 

Naïve Solution: **Ontology Version Numbering** 

Each change, however irrelevant, will lead to firmware update





Semantic Hashing!

$$\Delta:\{I,S\}\to O$$



#### **Ontological Description** of an Operator

(equivalence theorem is proven in the paper)



#### **Ontological Description** of an Operator

(equivalence theorem is proven in the paper)

"Signature" of an Operator



#### **Ontological Description** of an Operator

(equivalence theorem is proven in the paper)

"Signature" of an Operator

NEW

#### **String Representation** of the "Signature"



$$\sigma(\Delta) = \operatorname{name}(\Delta) + \text{``@I''} + \sum_{i=1}^{|I|} \operatorname{name}(Q_i) + \text{``@S''} + \sum_{i=|I|+1}^{|I|+|S|} \operatorname{name}(Q_i) + \text{``@O''} + \sum_{i=|I|+|S|+1}^{|I|+|S|+1} \operatorname{name}(Q_i)$$

#### Ontological Description of an Operator

(equivalence theorem is proven in the paper)

"Signature" of an Operator

NEW

**String Representation** of the "Signature"



$$\sigma(\Delta) = \text{name}(\Delta) + \text{``@I''} + \sum_{i=1}^{|I|} \text{name}(Q_i) + \text{``@S''} + \sum_{i=|I|+1}^{|I|+|S|} \text{name}(Q_i) + \text{``@O''} + \sum_{i=|I|+|S|+1}^{|I|+|S|+1} \text{name}(Q_i)$$

">"-delimitered hierarchy concatenation

":"-delimitered string concatenation

Operator

**Operator** 

Input

### Math Model of an Operator

#### **Ontological Description** of an Operator

(equivalence theorem is proven in the paper)

"Signature" of an Operator NEW

> **String Representation** of the "Signature"

 $Q_{|I|+|S|+1}$  $Q_{|I|+|S|}$  $Q_{|I|+|S|+|O|}$  $Q_{|I|+1}$ Type |I|+|S||I|+|S|+|O| $\sigma(\Delta) = \text{name}(\Delta) + \text{``@I''} + \sum$  $\int \operatorname{name}(Q_i) + \text{``@S''}$  $\operatorname{name}(Q_i) + "@O" +$  $\operatorname{name}(Q_i)$ 

**Settings** 

 $S_1$ 

Setting

 $S_{|S|}$ 

Inputs

 $I_{|I|}$ 

">"-delimitered hierarchy concatenation

":"-delimitered string concatenation

**Outputs** 

 $O_1$ 

Output

 $O_{|O|}$ 

# Semantic Hashing of an Operator: Hash Sum

$$\sigma(\Delta) = \operatorname{name}(\Delta) + \text{``@I''} + \sum_{i=1}^{|I|} \operatorname{name}(Q_i) + \text{``@S''} + \sum_{i=|I|+1}^{|I|+|S|} \operatorname{name}(Q_i) + \text{``@O''} + \sum_{i=|I|+|S|+1}^{|I|+|S|+1} \operatorname{name}(Q_i)$$

$$\pi(\Delta) = \operatorname{Pearson}(\sigma(\Delta))$$



$$\pi(\Delta) = \operatorname{Pearson}(\sigma(\Delta))$$

$$\sigma(\Delta) = \operatorname{name}(\Delta) + \text{``@I''} + \sum_{i=1}^{|I|} \operatorname{name}(Q_i) + \text{``@S''} + \sum_{i=|I|+1}^{|I|+|S|} \operatorname{name}(Q_i) + \text{``@O''} + \sum_{i=|I|+|S|+1}^{|I|+|S|+1} \operatorname{name}(Q_i)$$



2-bytes Pearson hash with custom lookup table

$$\sigma(\Delta) = \text{name}(\Delta) + \text{``@I''} + \sum_{i=1}^{|I|} \text{name}(Q_i) + \text{``@S''} + \sum_{i=|I|+1}^{|I|+|S|} \text{name}(Q_i) + \text{``@O''} + \sum_{i=|I|+|S|+1}^{|I|+|S|+1} \text{name}(Q_i)$$

$$\pi(\Delta) = \operatorname{Pearson}(\sigma(\Delta))$$

2-bytes Pearson hash with custom lookup table

```
self.table = [ \
       29, 186, 180, 162, 184, 218, 3, 141, 55, 0, 72, 98, 226, 108, 220,
       158, 231, 248, 247, 251, 130, 46, 174, 135, 170, 127, 163, 109, 229, 36, \
      90, 236, 89, 18, 196, 213, 42, 96, 104, 27, 11, 21, 203, 250, 194,
      57, 85, 54, 211, 32, 25, 140, 121, 147, 171, 6, 115, 234, 206, 101, \
8, 7, 33, 112, 159, 28, 240, 238, 92, 249, 22, 129, 208, 118, 125, \
      179, 24, 178, 143, 156, 63, 207, 164, 103, 172, 71, 157, 185, 199, 128, \
181, 175, 193, 154, 152, 176, 26, 9, 132, 62, 151, 2, 97, 205, 120, \
       77, 190, 150, 146, 50, 23, 155, 47, 126, 119, 254, 40, 241, 192, 144,
       83, 138, 49, 113, 160, 74, 70, 253, 217, 110, 58, 5, 228, 136, 87,
       215, 169, 14, 168, 73, 219, 167, 10, 148, 173, 100, 35, 222, 76, 221,
       139, 235, 16, 69, 166, 133, 210, 67, 30, 84, 43, 202, 161, 195, 223, \
       53, 34, 232, 245, 237, 230, 59, 80, 191, 91, 66, 209, 75, 78, 44,
       65, 1, 188, 252, 107, 86, 177, 242, 134, 13, 246, 99, 20, 81, 111, \
       68, 153, 37, 123, 216, 224, 19, 31, 82, 106, 201, 244, 60, 142, 94,
def hash_key(self, key) -> int:
   hashLen = 2
   result = 0
            range(hashLen):
           self.table[(ord(key[0]) + j) % 256]
           i in range(1, len(key)):
              self.table[(h ^ ord(key[i])) % 256]
       h = self.table[(h \land len(key)) % 256]
       result = (result << 8) | h
          result
```

# Semantic Hashing of an Operator: Example



 $\sigma(Input\ Pin) = "Input\ Pin@SEnum>Number@OBool"$  $\sigma(Output\ Pin) = "Output\ Pin@IBool@SEnum>Number"$  $\pi(Input\ Pin) = 19218$  $\pi(Output\ Pin) = 57372$ 

## Semantic Hashing of an Operator: Example



$$\sigma(Output\ Pin) = \text{``Output\ Pin}@IBool@SEnum>Number''$$
 
$$\pi(Input\ Pin) = 19218$$
 
$$\pi(Output\ Pin) = 57372$$

## Semantic Hashing of an Operator: Example



$$\sigma(Input\ Pin) = \text{``Input\ Pin}@SEnum>Number@OBool"\\ \sigma(Output\ Pin) = \text{``Output\ Pin}@IBool@SEnum>Number"\\ \pi(Input\ Pin) = 19218 \longrightarrow \text{Stored in the embedded reasoner}\\ \pi(Output\ Pin) = 57372 \longrightarrow \text{and referenced in the task ontology}$$

### Generation of Embedded Reasoner



### Generation of Embedded Reasoner



### Generation of Embedded Reasoner

















**Collision Danger:** 2-Bytes Hash







$$\mu = \text{MD5} \left( \sum_{i=1}^{m} \sigma(\Delta_i) \right)$$





**Collision Danger:** 2-Bytes Hash



number of operators in the embedded reasoner 
$$\mu = \text{MD5}\left(\sum_{i=1}^{m} \sigma(\Delta_i)\right)$$
 signature of operator ";"-delimitered string concatenation



**Collision Danger:** 2-Bytes Hash





This MD5 hash is stored in the embedded reasoner (taking 16 bytes)

1. Reasoner sends its operators' lookup table (set of Pearson-hased signatures of operators) and MD5 hash

- 1. Reasoner sends its operators' lookup table (set of Pearson-hased signatures of operators) and MD5 hash
- 2. SciVi server searches operators with corresponding hashes in the application ontology

- 1. Reasoner sends its operators' lookup table (set of Pearson-hased signatures of operators) and MD5 hash
- 2. SciVi server searches operators with corresponding hashes in the application ontology
- 3. If at least one operator has no correspondence, compatibility check is failed

- 1. Reasoner sends its operators' lookup table (set of Pearson-hased signatures of operators) and MD5 hash
- 2. SciVi server searches operators with corresponding hashes in the application ontology
- 3. If at least one operator has no correspondence, compatibility check is failed
- 4. Else, SciVi server reconstructs MD5 hash by the application ontology and compares it with the one received from reasoner

- 1. Reasoner sends its operators' lookup table (set of Pearson-hased signatures of operators) and MD5 hash
- 2. SciVi server searches operators with corresponding hashes in the application ontology
- 3. If at least one operator has no correspondence, compatibility check is failed
- 4. Else, SciVi server reconstructs MD5 hash by the application ontology and compares it with the one received from reasoner
- 5. If MD5 hashes do not match, compatibility check is failed

- 1. Reasoner sends its operators' lookup table (set of Pearson-hased signatures of operators) and MD5 hash
- 2. SciVi server searches operators with corresponding hashes in the application ontology
- 3. If at least one operator has no correspondence, compatibility check is failed
- 4. Else, SciVi server reconstructs MD5 hash by the application ontology and compares it with the one received from reasoner
- 5. If MD5 hashes do not match, compatibility check is failed
- 6. Else, compatibility check is passed

**Testing environment:** 

### **Testing environment:**

SciVi server: MacBook Pro 2.3 GHz 8-Core Intel Core i9 CPU, 16 Gb RAM

### **Testing environment:**

- SciVi server: MacBook Pro 2.3 GHz 8-Core Intel Core i9 CPU, 16 Gb RAM
- Application ontology: 328 nodes and 845 relationships

### **Testing environment:**

- SciVi server: MacBook Pro 2.3 GHz 8-Core Intel Core i9 CPU, 16 Gb RAM
- Application ontology: 328 nodes and 845 relationships
- Edge device: custom ESP8266-based controller for VR scene

### **Testing environment:**

- SciVi server: MacBook Pro 2.3 GHz 8-Core Intel Core i9 CPU, 16 Gb RAM
- Application ontology: 328 nodes and 845 relationships
- Edge device: custom ESP8266-based controller for VR scene

### **Testing environment:**

- SciVi server: MacBook Pro 2.3 GHz 8-Core Intel Core i9 CPU, 16 Gb RAM
- Application ontology: 328 nodes and 845 relationships
- Edge device: custom ESP8266-based controller for VR scene

#### **Testing results:**

Semantic hash calculation time: 2.15 ms / operator (average)

### **Testing environment:**

- SciVi server: MacBook Pro 2.3 GHz 8-Core Intel Core i9 CPU, 16 Gb RAM
- Application ontology: 328 nodes and 845 relationships
- Edge device: custom ESP8266-based controller for VR scene

- Semantic hash calculation time: 2.15 ms / operator (average)
- Firmware memory footprint: 16 bytes

### **Testing environment:**

- SciVi server: MacBook Pro 2.3 GHz 8-Core Intel Core i9 CPU, 16 Gb RAM
- Application ontology: 328 nodes and 845 relationships
- Edge device: custom ESP8266-based controller for VR scene

- Semantic hash calculation time: 2.15 ms / operator (average)
- Firmware memory footprint: 16 bytes
- Device behavior updating time:

### **Testing environment:**

- SciVi server: MacBook Pro 2.3 GHz 8-Core Intel Core i9 CPU, 16 Gb RAM
- Application ontology: 328 nodes and 845 relationships
- Edge device: custom ESP8266-based controller for VR scene

- Semantic hash calculation time: 2.15 ms / operator (average)
- Firmware memory footprint: 16 bytes
- Device behavior updating time:

| Development case: type of changes in ontology | No changes | Changes of related operators' structure | Changes of related operators' parameters naming | Changes<br>of unrelated<br>operators | Average  |
|-----------------------------------------------|------------|-----------------------------------------|-------------------------------------------------|--------------------------------------|----------|
| Conventional versioning                       | 16 ms      | 30000 ms                                | 30000 ms                                        | 30000 ms                             | 22504 ms |
| Semantic hashing                              | 16 ms      | 30000 ms                                | 16 ms                                           | 16 ms                                | 7512 ms  |

### **Testing environment:**

- SciVi server: MacBook Pro 2.3 GHz 8-Core Intel Core i9 CPU, 16 Gb RAM
- Application ontology: 328 nodes and 845 relationships
- Edge device: custom ESP8266-based controller for VR scene

- Semantic hash calculation time: 2.15 ms / operator (average)
- Firmware memory footprint: 16 bytes
- Device behavior updating time:

| Development case: type of changes in ontology | No changes | Changes of related operators' structure | Changes of related operators' parameters naming | Changes<br>of unrelated<br>operators | Average                  |
|-----------------------------------------------|------------|-----------------------------------------|-------------------------------------------------|--------------------------------------|--------------------------|
| Conventional versioning                       | 16 ms      | 30000 ms                                | 30000 ms                                        | 30000 ms<br><b>3</b>                 | 22504 ms<br>times faster |
| Semantic hashing                              | 16 ms      | 30000 ms                                | 16 ms                                           | 16 ms                                | 7512 ms                  |

Conclusion 14/15

### **Result:**

New level of ODEC maturity by mitigating the compatibility uncertainty with semantic hashing:

- 1. Average performance boost: x3
- 2. Memory footprint: 16 bytes per firmware
- 3. Implementation available on GitHub: <a href="https://github.com/scivi-tools/">https://github.com/scivi-tools/</a>

### Future plan:

Further development of ODEC by creating an ontology-driven bus for joining hardware components of edge devices on plug-and-play principles







# Thank you for attention!

This study is supported by the research grant No. ID92566385 from Saint Petersburg University, "Text processing in L1 and L2: Experimental study with eye-tracking, visual analytics and virtual reality technologies"

Konstantin Ryabinin 1,2,3, kostya.ryabinin@gmail.com
Svetlana Chuprina 2, chuprinas@inbox.ru