

Using Scientific Visualization Tools to Bridge the Talent Gap

Konstantin Ryabinin

e-mail: kostya.ryabinin@gmail.com

Svetlana Chuprina

e-mail: chuprinas@inbox.ru

Science and HPC Talent Gap

Bridging Science and HPC Talent Gap

- 1. Easy to use with third-party data and data generators (solvers)
- 2. Easy to install
- 3. Easy to distribute data and results
- 4. High visual quality of rendering

- 1. Automated high-level integration with third-party solvers based on ontologies
- 2. Multiplatform portability
- 3. Client-server architecture and distributed rendering support
- 4. High visual quality of rendering due to adaptive anti-aliasing algorithm

Benefits of Multiplatform Portability

Collaboration with Help of SciVi

Client-Side (Students)

Interdisciplinary Research with Help of SciVi 9 / 23

Client-Side (Researchers from different fields of science)

1. Students develop the solvers and use SciVi as visualizer

OR

2. Students use the given solver and use SciVi to analyze its output

SciVi Architecture

Problems of Integration with Solver

Well-known scientific visualization systems:

- 1. No unified way to adapt to third-party solver
- 2. No feedback

Well-known solutions:

- 1. Create visualizer from scratch
- 2. Require solver to generate data in standard format
- 3. Develop data format convertors

Tackle the Integration Problems

Adaptive integration:

- 1. Model-based architecture
- 2. Ontology engineering

Ontology – formal model of the application domain

$$O = \langle T, R, A \rangle$$

T – thesaurus of application domain concepts

R – set or relations between concepts

A – set of axioms

Tackle the Integration Problems

We suggest to use the damain-specific ontologies without axioms to ensure high-level integration of visualizer with third-party solvers:

$$A = \emptyset$$

Ontology – formal model of the application domain

$$O = \langle T, R, A \rangle$$

T – thesaurus of application domain concepts

R – set or relations between concepts

A – set of axioms

I/O Syntax Ontology

- Input/Output statements description
 - C, C++, Fortran, Java
 - Solver's source code is available:
 - **Automatic parser generation**
 - Automatic Input/Output data description generation
 - Solver's source code is not available:
 - High-level graphical user interface for Input/Output data description

Hybrid finite-difference schemes optimization

Output file mask:

%6 %7 %8

Visual Objects Ontology

- Visual objects description:
 - 3D-models, charts, images, ...
- Visualization settings:
 - Mapping Input/Output data to visual objects' properties
 - Solver's executable is available:
 - Set up feedback from visualizer to solver
 - Solver's executable is not available:
 - Data visualization only

Data visualization only

0

A picture paints a thousand words

Distinctive features of the method:

- 1. High-level integration with third-party solvers
- 2. Support of feedback
- 3. Independency of solver's architecture
- 4. Independency of solver's application domain

Benefits for teachers:

- 1. High-quality demonstration of processes, methods and algorithms
- 2. Ability to use in any field of science
- 3. No need to hire third-party developers

SciVi Usage

1. Fluid simulation

Solver: OpenFOAM

Language: C++

2. Hybrid finite-difference schemes

optimization

Solver: Burgers2

Language: Fortran

3. Digital art object

Solver: 3D-scanner

A lot of disciplines assume students to develop solvers (Mathematical Physics, Computational Science, Geo-Information Systems, ...)

SciVi provides:

- 1. High-quality demonstration of results
- 2. Verification of results through visualization
- 3. Collaboration by using laptops and mobile devices students have wherever they want to

How SciVi Helps to Study Parallel Algorithms 20 / 23

- Visualize intermediate calculations
 (uncover the data relations to perform efficient data decomposition)
- 2. Visualize statistics obtained from solver (parallel algorithms evaluation)
- 3. Visualize both serial and parallel algorithms results side by side (verification of parallelization)

Science and HPC Talent Gap

- 1. Integrate SciVi in educational process as a part of pedagogical learning environment
- 2. Encourage students to achieve complex higher-order skills in parallel programming through scientific visualization
- 3. Use SciVi and Perm State University supercomputer facilities to tackle complex interdisciplinary scientific problems

Perm State University Bukireva Str. 15, 614990, Perm, Russia

Thank you for your attention!

Konstantin Ryabinin

e-mail: kostya.ryabinin@gmail.com

Svetlana Chuprina

e-mail: chuprinas@inbox.ru