Development of Multiplatform Adaptive Rendering Tools to Visualize Scientific Experiments

Konstantin Ryabinin,

e-mail: kostya.ryabinin@gmail.com

Svetlana Chuprina,

e-mail: chuprinas@inbox.ru

Perm State University, Bukireva Str. 15, 614990, Perm, Russia

Scientific Visualization & Multidisciplinarity 2/41

MS Excel

Common Problems (1)

- There are no high-level means to integrate solvers and visualizers
- There are no adequate multi-platform portability tools
- Implementation of distributed visualizers is inefficient (visualizers are not adaptive to software infrastructure)
- The quality of images is not high enough because of aliasing (jagged edges of objects)

Common Problems (2)

There are no high-level means to integrate solvers and visualizers

Common Problems (3)

There are no adequate multi-platform portability tools

Common Problems (4)

Implementation of distributed visualizers is inefficient (visualizers are not adaptive to software infrastructure)

Common Problems (5)

The quality of images is not high enough because of aliasing (jagged edges of objects)

Development of the client-server scientific visualization system

Main features:

- Automatic integration with different solvers
- Adaptive distribution of rendering between client and server
- Multiplatform portability
- Adaptive antialiasing

Objectives

- To suggest new approach based on domain-specific ontologies to integrate different third-party solvers with visualization system
- To develop the frameworks' stack that helps to port visualization system to different platforms
- To design special heuristics for adaptive distribution of rendering between client and server
- To create new multi-platform adaptive anti-aliasing algorithm to increase quality of images
- To test the visualization system to solve real scientific tasks in different application domains

Example of ontology built according to solver's source code:

- Requirements that the solver should fulfill:
 - Single input and single output file
 - Type of objects evaluated by solver should not change during the experiment

SciVi: Multiplatform Portability

SciVi client

SciVi: Stack of Frameworks

- 3 High-level visualization means
- 2 Low-level visualization means
- OS abstraction layer
- System-dependent part

SciVi: Server Architecture (1)

SciVi: Server Architecture (2)

SciVi: Server Architecture (3)

SciVi: Server Architecture (4)

SciVi: Server Architecture (5)

SciVi: Server Architecture (6)

SciVi: Client Architecture (1)

SciVi: Client Architecture (2)

SciVi: Client Architecture (3)

SciVi: Client Architecture (4)

- Server performs the adaptive distribution based on heuristics according to
 - Type and performance of the client
 - Speed of the network connection
 - Load of the server

Server's tasks:

- Preparing the scene description according to the solver-specific template generated by integration module
- Partial visualization of the data by pVTK library
- Preprocessing and simplification of the data
- Transfer the data to client

Client's tasks:

- Building interface for solver according to the description generated by integration module
- Rendering of the final image

- Adaptive rendering distribution allows to
 - Enhance scene interactivity on the client-side
 - Optimize loading of heterogeneous computing system with
 - Different kinds of devices (desktop, tablet, smartphone)
 - Different types of network connections (Ethernet, WiFi, 3G, EDGE)

Aliasing Problem

Rendering is a discrete process => aliasing is inevitable

a	a	a	a	a	a	٥	a	a	٥	٥	a	a	a	a	٥
0	٥	9	٥	٥	٩	٥	٥	٠	٥	٥	٥	٥	٥	0	ò
0	٥	٥	o	٥	٥	٥	٥	٥	٥	٥	٥	0	٥	٥	0
۵	a	a	a	a	a	a	a	a	o	a	a	٥	a	a	a
0	٥	9	0	۰	۰	٥	0	٥	٥	٥	4	0	Q	₫	o
0	٥	٥	0	0	٥	ø	٥	٥	Ġ	٥	٥	0	٥	٥	0
٥	٥	٥	٥	a	a	a	6	٥	o	9	a	a	a	a	a
0	P	٥	0	Q	٥	0	Q	٥	0	Q	٥	0	Q	٥	0
٥	٥	٥	0	٥	٥	0	٥	٥	0	٥	٥	0	٥	٥	0

SciVi: Adaptive Anti-aliasing (1)

Using our own algorithm to smooth jagged edges on the images:

A = SSAA \circ FXAA T(A) \sim O($n + (S^2 + 1) \cdot w \cdot h$),

n – count of vertices on the scene

S – supersampling ratio

w, h - width and height of the screen

SciVi: Adaptive Anti-aliasing (2)

- Adaptivity of algorithm:
 - Supersampling ratio (S) adjustment to adapt to software and hardware properties

$$S = \begin{cases} \frac{\textbf{W}_{texture}}{\textbf{W}_{screen}}, \textbf{W}_{screen} > h_{screen} \\ \frac{\textbf{h}_{texture}}{\textbf{h}_{screen}}, \textbf{W}_{screen} \leq h_{screen} \end{cases}$$
, $S = \min\{\max\{S, 1\}, 2\}$

- Automatic anti-aliasing on/off switching to ensure high performance during time-critical periods
- Layered rendering to combine objects with and without anti-aliasing on the single scene

SciVi: Adaptive Anti-aliasing (3)

- Implemented anti-aliasing algorithm allows to increase:
 - Visual quality of images
 - Performance of rendering

ParaView

SciVi

SciVi: Testing (1)

- We tested SciVi on the following real scientific tasks:
 - Modelling of nano-particles magnet momenta orientation in the magnetic field

Solver: MagnetoDynamics-F

Language: Fortran

Multiple alignment of DNA sequences

Solver: ClustalW

Language: C++

Fluid simulation

Solver: OpenFOAM

Language: C++

Changes of prices on BTC-e stock market

Solver: Application that monitors BTC-e

Language: Java

SciVi: Testing (2)

- Solver has been developed in Perm State University
- Solver runs on supercomputer and produces output looking like

Example: MagnetoDynamic-F (2)

Server transforms the output data to the XML-description of scene, acceptable for SciVi

```
<model id="spin 0">
  <data model="http://dl.dropbox.com/u/71028668/scivi/spins/spin.n3d"</pre>
        shader="blinn vc"/>
  <position x="-0.750000" y="-0.750000" z="-0.750000"
            scaleX="0.045" scaleY="0.045" scaleZ="0.045"
            dirX="0.440799" dirY="0.193456" dirZ="-0.876511"/>
  <animation>
    <timestamp id="1">
      <position dirX="0.501728" dirY="-0.001334" dirZ="-0.865024"/>
    </timestamp>
    <timestamp id="2">
      <position dirX="0.492641" dirY="-0.206796" dirZ="-0.845305"/>
    </timestamp>
    <timestamp id="3">
      <position dirX="0.428445" dirY="-0.370627" dirZ="-0.824057"/>
    </timestamp>
  </animation>
</model>
```

Example: MagnetoDynamic-F (3)

The result of client-side visualization

SciVi and Parallel Computing

- Scientific data are usually Big Data
- SciVi is ready to meet Big Data because of scalability and flexibility
- The solver can be a parallel program
- The image is partially rendered on the server-side using pVTK which ensures efficient parallel rendering

- We developed scientific visualization system SciVi which provides:
 - Ontology-based automated integration with thirdparty solvers
 - Multi-platform portability
 - Adaptive distribution of rendering
 - Adaptive anti-aliasing
- SciVi was successfully tested on the different real scientific tasks
- SciVi allows the researchers in different branches of science to collaborate and to share their results

- To extend SciVi ontologies
- To enhance heuristics used for rendering distribution
- To implement additional data preprocessing algorithms on the server-side
- To implement additional rendering algorithms on the client-side
- To research the server-scaling in the context of Big Data

Thank you for your attention!

Konstantin Ryabinin,

e-mail: kostya.ryabinin@gmail.com

Svetlana Chuprina,

e-mail: chuprinas@inbox.ru

Perm State University, Bukireva Str. 15, 614990, Perm, Russia

