

Adaptive Scientific Visualization System for
Desktop Computers and Mobile Devices

Konstantin Ryabinin,
e-mail: kostya.ryabinin@gmail.com

Svetlana Chuprina,
e-mail: chuprinas@inbox.ru

Perm State National Research University,
Bukireva Str. 15, 614990, Perm, Russia

Barcelona, 2013

Scientific visualization 2 / 40

If I can't picture it,
I can't understand it

Albert Einstein

Scientific visualization –
essential part of

scientific research

Scientific visualization –
essential part of

scientific research

Actual problems (1) 3 / 40

There are a lot of scientific visualization software

BUT
There are no high-level integration means
between solver and visualizer

There are no adequate tools for multi-platform
portability

Implementation of distributed solvers and
visualizers is inefficient (visualizers are not
adaptive)

Actual problems (2) 4 / 40

There are no high-level integration means between
solver and visualizer

Solver

Vizualizer

Integrator

Actual problems (3) 5 / 40

iOS

Microsoft Windows

GNU / Linux

SupercomputersSupercomputers

Desktop
computers
Desktop

computers
Mobile
devices
Mobile
devices

There are no adequate tools for multi-platform portability

Actual problems (4) 6 / 40

Implementation of distributed solvers and visualizers
is inefficient

Client-server visualization 7 / 40

There are 3 approaches to client-server visualization:

Visualization on the server-side (VNC)

Low interactivity

Low load on the client

Visualization on the client-side

High interactivity

High load on the client

Distributed visualization

High interactivity

Optimal load on the client and server

Purpose (1) 8 / 40

Development of the client-server
scientific visualization system

Main features:

Automatic integration with different solvers
Adaptive distribution of rendering between
client and server
Multiplatform portability

Purpose (2) 9 / 40

Multiplatform portability

Server
Desktop computer
High-performance massively parallel
supercomputer

Client
Desktop computer
Mobile device (smartphone / tablet)

Objectives 10 / 40

Analysis of existing scientific visualization systems
and tools

Research of techniques to create multi-platform
applications

Developing multi-platform core of scientific
visualization system (client and server)

Developing tools to port graphical user interface
across different platforms

Reaching adaptivity of system to performance of
the client and speed of the connection

Testing of the visualization system implementation for
a lot of different real scientific problems

About applications 11 / 40

Applications that have

solver and visualizer at once:

MathCad, MatLab, Mathematica, Maxima, …

PocketCAS, GraphCalc, ...

visualizer only:

TecPlot, Origin, EasyPlot, IRIS Explorer, Surfer,
Grapher, AMLab, ParaView …

KiwiViewer

Drawbacks:

Only a few mobile solutions

Only a few multi-platform solutions

Only a few solutions allow automatic integration
with solver running on high-performance computer

About libraries 12 / 40

Visualization Toolkit:

pVTK (for the massively parallel server)

VTK (for the desktop client)

VES (for the mobile client)

About graphics rendering engines 13 / 40

Unreal Engine, SIO2, Unity3D

OGRE, Irrlicht, Oolong, Cocos 2D / 3D, libGDX

Drawbacks:

Orientation not to scientific visualization,
but only to games

No support of special scientific
rendering techniques
(volume rendering, slice-based rendering, etc.)

About GUI frameworks 14 / 40

Libraries and frameworks:

Qt, GTK, Tk, Awt / Swing

Clutter, PhoneGap

HTML5 / CSS:

MoSync

Flash

Drawbacks:

Insufficient efficiency

Stability problems on mobile platforms

Double-design problem: GUI should be designed twice
(for desktop computer and for mobile device)

Proposed solution 15 / 40

Scientific visualization system called SciVi

Client-server architecture

Multi-platform portability

Adaptive distribution of rendering between
client and server

Automatic integration with solver

Special rendering techniques

Dublin Core as metadata standard

High-level tools for describing
solvers

SciVi: architecture 16 / 40

SciVi: multi-platform portability (1) 17 / 40

Inplementation in C++

Usage of OpenGL(ES) as a rendering standard

Usage of NFoundation и NGraphics libraries
(developed in Russian IT-company Nulana LTD
located in Perm) as an abstraction layer
between OS and SciVi

Solving of GUI framework problem:

Development of our own GUI framework
based on OpenGL(ES)

SciVi: multi-platform portability (2) 18 / 40

Solving double-design problem:

Development of GUI builder adaptive to
concrete platform based on high-level
declaration in XML

Target platforms:

Windows, GNU / Linux, Mac OS X

iOS, Android

SciVi: distributed rendering 19 / 40

Server-side:

Planning distribution of rendering based on heuristics

Rendering of static parts of scene (textures, etc.)

Rendering using pVTK

Preprocessing of data before sending to the client

Adaptivity to performance of the client and speed of the
connection through simplification of data

Client-side:

Renedring of final image using our own algorithms and
VTK / VES

High interactivity

SciVi: intergation with solver (1) 20 / 40

Server

Solver

Client

Description
of solver

User

SciVi: intergation with solver (2) 21 / 40

Server

Solver

Client

Description
of solver

User

reading

SciVi: intergation with solver (3) 22 / 40

Server

Solver

Client

Description
of solver

User

transmitting
data

SciVi: intergation with solver (4) 23 / 40

Server

Solver

Client

Description
of solver

User

Interface

b
u

ild
in

g

SciVi: intergation with solver (5) 24 / 40

Server

Solver

Client

Description
of solver

User

Interface

control
commands

SciVi: intergation with solver (6) 25 / 40

Server

Solver

Client

Description
of solver

User

Interface

interactions

data for
visualization

vi
su

al
iz

at
io

n
processed

data

SciVi: graphics rendering 26 / 40

Current version:

Rendering of shaded and textured surfaces and 3D-models

Custom GLSL/ESSL shaders

3D-moldes in PLY, 3DS and internal binary format

Textures in PNG, JPG, BMP, DIB and TGA

Basic primitives (spheres, cubes, billboards, etc.)

Multiscale rendering (microscope metaphor)

Animation

Affine transform

Uniform-variables in shaders

XML-description of scene with links to resources (textures,
models, shaders source code, etc.) obtained from server

SciVi: architecture of client 27 / 40

SciVi: support of Dublin Core 28 / 40

Necessary resources are annotated according to
Dublin Core standard to make them searchable and reusable

Example of metadata for electron's spin model:

spin.xml:

<meta name="DC.Title"
 content="Spin of electron"/>
<meta name="DC.Creator"
 content="Konstantin Ryabinin"/>
<meta name="DC.Date"
 content="04.05.2013"/>
<meta name="DC.Source"
 content="PLY"/>
<meta name="DC.Format"
 content="N3D"/>
<meta name="DC.Description"
 content="3D-Model of electron's spin"/>
<meta name="DC.RightsHolder"
 content="Perm State National Research University"/>

spin.n3d

Example: modelling of electron's spins
in magnetic filed (1) 29 / 40

Solver has been developed in Perm State National
Research University

Solver runs on supercomputer and produces output
looking like

Example of solver's output

t1

x 1
1 y 1

1 z1
1

x 2
1 y 2

1 z2
1

...
x n

1 y n
1 zn

1

t2

x 1
2 y 1

2 z1
2

x 2
2 y 2

2 z2
2

...
x n

2 y n
2 zn

2

...

t j − modelling time

x i
j y i

j zi
j − coordinates of spin i in t j moment of time ,

i=1,n , j=1,m

30 / 40

Example of concrete output data

0
0.440798910779106 0.193456073216762 -0.876510734669864
0.0480228711779573 -0.284014985805231 -0.957616463769227
0.36786492397633 0.792218280706476 -0.486893821507692
-0.114873074685615 0.0755407821401694 -0.990503794513643
. . .
0.35
0.501727936749538 -0.00133378223902795 -0.865024449660234
-0.00346408984151143 -0.272264254539676 -0.962216283265631
0.628307647042774 0.620768861805486 -0.468908862019364
-0.0396858270658191 0.11017684776047 -0.993119377188698
. . .

Example: modelling of electron's spins
in magnetic filed (2)

31 / 40

Server transforms the output data to the XML-description
of scene, acceptable for SciVi

<model id="spin_0">
 <data model="http://dl.dropbox.com/u/71028668/scivi/spins/spin.n3d"
 shader="blinn_vc"/>
 <position x="-0.750000" y="-0.750000" z="-0.750000"
 scaleX="0.045" scaleY="0.045" scaleZ="0.045"
 dirX="0.440799" dirY="0.193456" dirZ="-0.876511"/>
 <animation>
 <timestamp id="1">
 <position dirX="0.501728" dirY="-0.001334" dirZ="-0.865024"/>
 </timestamp>
 <timestamp id="2">
 <position dirX="0.492641" dirY="-0.206796" dirZ="-0.845305"/>
 </timestamp>
 <timestamp id="3">
 <position dirX="0.428445" dirY="-0.370627" dirZ="-0.824057"/>
 </timestamp>
 . . .
 </animation>
</model>
. . .

Example: modelling of electron's spins
in magnetic filed (3)

32 / 40

The result of client-side visualization

Example: modelling of electron's spins
in magnetic filed (4)

33 / 40

The result of client-side visualization

Example: modelling of electron's spins
in magnetic filed (4)

34 / 40

The result of client-side visualization

Example: modelling of electron's spins
in magnetic filed (4)

35 / 40

The result of client-side visualization

Example: modelling of electron's spins
in magnetic filed (4)

36 / 40

The result of client-side visualization

Example: modelling of electron's spins
in magnetic filed (4)

37 / 40

The result of client-side visualization

Example: modelling of electron's spins
in magnetic filed (4)

Conclusions: tasks completed 38 / 40

Working prototype of client

Subsystem that automatically builds graphical user
interface

Subsystem that renders 3D-scene in multiscale
mode

Subsystem that communicates with web-hosting of
server settings

Multiplatform portability:
support of Windows, GNU / Linux, Mac OS X, iOS
and Android

Demo-prototype of server

Conclusions: future plans 39 / 40

Improvement of client

Integration with technologie of augmented reality

Integration with VTK / VES

Implementation of multidimensional data rendering

Implementation as a library

Implementation of server working prototype

Development of high-level tools for integration
with solvers (based on ontologies)

Adaptivity to solver, client and speed of connection

Distribution of rendering

More tests on different real scientific problems

Thank you for your attention!

Konstantin Ryabinin,
e-mail: kostya.ryabinin@gmail.com

Svetlana Chuprina,
e-mail: chuprinas@inbox.ru

Perm State National Research University,
Bukireva Str. 15, 614990, Perm, Russia

Barcelona, 2013

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

